naga/front/mod.rs
1/*!
2Frontend parsers that consume binary and text shaders and load them into [`Module`](super::Module)s.
3*/
4
5mod interpolator;
6mod type_gen;
7
8#[cfg(feature = "glsl-in")]
9pub mod glsl;
10#[cfg(feature = "spv-in")]
11pub mod spv;
12#[cfg(feature = "wgsl-in")]
13pub mod wgsl;
14
15use crate::{
16 arena::{Arena, Handle, UniqueArena},
17 proc::{ResolveContext, ResolveError, TypeResolution},
18 FastHashMap,
19};
20use std::ops;
21
22/// A table of types for an `Arena<Expression>`.
23///
24/// A front end can use a `Typifier` to get types for an arena's expressions
25/// while it is still contributing expressions to it. At any point, you can call
26/// [`typifier.grow(expr, arena, ctx)`], where `expr` is a `Handle<Expression>`
27/// referring to something in `arena`, and the `Typifier` will resolve the types
28/// of all the expressions up to and including `expr`. Then you can write
29/// `typifier[handle]` to get the type of any handle at or before `expr`.
30///
31/// Note that `Typifier` does *not* build an `Arena<Type>` as a part of its
32/// usual operation. Ideally, a module's type arena should only contain types
33/// actually needed by `Handle<Type>`s elsewhere in the module — functions,
34/// variables, [`Compose`] expressions, other types, and so on — so we don't
35/// want every little thing that occurs as the type of some intermediate
36/// expression to show up there.
37///
38/// Instead, `Typifier` accumulates a [`TypeResolution`] for each expression,
39/// which refers to the `Arena<Type>` in the [`ResolveContext`] passed to `grow`
40/// as needed. [`TypeResolution`] is a lightweight representation for
41/// intermediate types like this; see its documentation for details.
42///
43/// If you do need to register a `Typifier`'s conclusion in an `Arena<Type>`
44/// (say, for a [`LocalVariable`] whose type you've inferred), you can use
45/// [`register_type`] to do so.
46///
47/// [`typifier.grow(expr, arena)`]: Typifier::grow
48/// [`register_type`]: Typifier::register_type
49/// [`Compose`]: crate::Expression::Compose
50/// [`LocalVariable`]: crate::LocalVariable
51#[derive(Debug, Default)]
52pub struct Typifier {
53 resolutions: Vec<TypeResolution>,
54}
55
56impl Typifier {
57 pub const fn new() -> Self {
58 Typifier {
59 resolutions: Vec::new(),
60 }
61 }
62
63 pub fn reset(&mut self) {
64 self.resolutions.clear()
65 }
66
67 pub fn get<'a>(
68 &'a self,
69 expr_handle: Handle<crate::Expression>,
70 types: &'a UniqueArena<crate::Type>,
71 ) -> &'a crate::TypeInner {
72 self.resolutions[expr_handle.index()].inner_with(types)
73 }
74
75 /// Add an expression's type to an `Arena<Type>`.
76 ///
77 /// Add the type of `expr_handle` to `types`, and return a `Handle<Type>`
78 /// referring to it.
79 ///
80 /// # Note
81 ///
82 /// If you just need a [`TypeInner`] for `expr_handle`'s type, consider
83 /// using `typifier[expression].inner_with(types)` instead. Calling
84 /// [`TypeResolution::inner_with`] often lets us avoid adding anything to
85 /// the arena, which can significantly reduce the number of types that end
86 /// up in the final module.
87 ///
88 /// [`TypeInner`]: crate::TypeInner
89 pub fn register_type(
90 &self,
91 expr_handle: Handle<crate::Expression>,
92 types: &mut UniqueArena<crate::Type>,
93 ) -> Handle<crate::Type> {
94 match self[expr_handle].clone() {
95 TypeResolution::Handle(handle) => handle,
96 TypeResolution::Value(inner) => {
97 types.insert(crate::Type { name: None, inner }, crate::Span::UNDEFINED)
98 }
99 }
100 }
101
102 /// Grow this typifier until it contains a type for `expr_handle`.
103 pub fn grow(
104 &mut self,
105 expr_handle: Handle<crate::Expression>,
106 expressions: &Arena<crate::Expression>,
107 ctx: &ResolveContext,
108 ) -> Result<(), ResolveError> {
109 if self.resolutions.len() <= expr_handle.index() {
110 for (eh, expr) in expressions.iter().skip(self.resolutions.len()) {
111 //Note: the closure can't `Err` by construction
112 let resolution = ctx.resolve(expr, |h| Ok(&self.resolutions[h.index()]))?;
113 log::debug!("Resolving {:?} = {:?} : {:?}", eh, expr, resolution);
114 self.resolutions.push(resolution);
115 }
116 }
117 Ok(())
118 }
119
120 /// Recompute the type resolution for `expr_handle`.
121 ///
122 /// If the type of `expr_handle` hasn't yet been calculated, call
123 /// [`grow`](Self::grow) to ensure it is covered.
124 ///
125 /// In either case, when this returns, `self[expr_handle]` should be an
126 /// updated type resolution for `expr_handle`.
127 pub fn invalidate(
128 &mut self,
129 expr_handle: Handle<crate::Expression>,
130 expressions: &Arena<crate::Expression>,
131 ctx: &ResolveContext,
132 ) -> Result<(), ResolveError> {
133 if self.resolutions.len() <= expr_handle.index() {
134 self.grow(expr_handle, expressions, ctx)
135 } else {
136 let expr = &expressions[expr_handle];
137 //Note: the closure can't `Err` by construction
138 let resolution = ctx.resolve(expr, |h| Ok(&self.resolutions[h.index()]))?;
139 self.resolutions[expr_handle.index()] = resolution;
140 Ok(())
141 }
142 }
143}
144
145impl ops::Index<Handle<crate::Expression>> for Typifier {
146 type Output = TypeResolution;
147 fn index(&self, handle: Handle<crate::Expression>) -> &Self::Output {
148 &self.resolutions[handle.index()]
149 }
150}
151
152/// Type representing a lexical scope, associating a name to a single variable
153///
154/// The scope is generic over the variable representation and name representation
155/// in order to allow larger flexibility on the frontends on how they might
156/// represent them.
157type Scope<Name, Var> = FastHashMap<Name, Var>;
158
159/// Structure responsible for managing variable lookups and keeping track of
160/// lexical scopes
161///
162/// The symbol table is generic over the variable representation and its name
163/// to allow larger flexibility on the frontends on how they might represent them.
164///
165/// ```
166/// use naga::front::SymbolTable;
167///
168/// // Create a new symbol table with `u32`s representing the variable
169/// let mut symbol_table: SymbolTable<&str, u32> = SymbolTable::default();
170///
171/// // Add two variables named `var1` and `var2` with 0 and 2 respectively
172/// symbol_table.add("var1", 0);
173/// symbol_table.add("var2", 2);
174///
175/// // Check that `var1` exists and is `0`
176/// assert_eq!(symbol_table.lookup("var1"), Some(&0));
177///
178/// // Push a new scope and add a variable to it named `var1` shadowing the
179/// // variable of our previous scope
180/// symbol_table.push_scope();
181/// symbol_table.add("var1", 1);
182///
183/// // Check that `var1` now points to the new value of `1` and `var2` still
184/// // exists with its value of `2`
185/// assert_eq!(symbol_table.lookup("var1"), Some(&1));
186/// assert_eq!(symbol_table.lookup("var2"), Some(&2));
187///
188/// // Pop the scope
189/// symbol_table.pop_scope();
190///
191/// // Check that `var1` now refers to our initial variable with value `0`
192/// assert_eq!(symbol_table.lookup("var1"), Some(&0));
193/// ```
194///
195/// Scopes are ordered as a LIFO stack so a variable defined in a later scope
196/// with the same name as another variable defined in a earlier scope will take
197/// precedence in the lookup. Scopes can be added with [`push_scope`] and
198/// removed with [`pop_scope`].
199///
200/// A root scope is added when the symbol table is created and must always be
201/// present. Trying to pop it will result in a panic.
202///
203/// Variables can be added with [`add`] and looked up with [`lookup`]. Adding a
204/// variable will do so in the currently active scope and as mentioned
205/// previously a lookup will search from the current scope to the root scope.
206///
207/// [`push_scope`]: Self::push_scope
208/// [`pop_scope`]: Self::push_scope
209/// [`add`]: Self::add
210/// [`lookup`]: Self::lookup
211pub struct SymbolTable<Name, Var> {
212 /// Stack of lexical scopes. Not all scopes are active; see [`cursor`].
213 ///
214 /// [`cursor`]: Self::cursor
215 scopes: Vec<Scope<Name, Var>>,
216 /// Limit of the [`scopes`] stack (exclusive). By using a separate value for
217 /// the stack length instead of `Vec`'s own internal length, the scopes can
218 /// be reused to cache memory allocations.
219 ///
220 /// [`scopes`]: Self::scopes
221 cursor: usize,
222}
223
224impl<Name, Var> SymbolTable<Name, Var> {
225 /// Adds a new lexical scope.
226 ///
227 /// All variables declared after this point will be added to this scope
228 /// until another scope is pushed or [`pop_scope`] is called, causing this
229 /// scope to be removed along with all variables added to it.
230 ///
231 /// [`pop_scope`]: Self::pop_scope
232 pub fn push_scope(&mut self) {
233 // If the cursor is equal to the scope's stack length then we need to
234 // push another empty scope. Otherwise we can reuse the already existing
235 // scope.
236 if self.scopes.len() == self.cursor {
237 self.scopes.push(FastHashMap::default())
238 } else {
239 self.scopes[self.cursor].clear();
240 }
241
242 self.cursor += 1;
243 }
244
245 /// Removes the current lexical scope and all its variables
246 ///
247 /// # PANICS
248 /// - If the current lexical scope is the root scope
249 pub fn pop_scope(&mut self) {
250 // Despite the method title, the variables are only deleted when the
251 // scope is reused. This is because while a clear is inevitable if the
252 // scope needs to be reused, there are cases where the scope might be
253 // popped and not reused, i.e. if another scope with the same nesting
254 // level is never pushed again.
255 assert!(self.cursor != 1, "Tried to pop the root scope");
256
257 self.cursor -= 1;
258 }
259}
260
261impl<Name, Var> SymbolTable<Name, Var>
262where
263 Name: std::hash::Hash + Eq,
264{
265 /// Perform a lookup for a variable named `name`.
266 ///
267 /// As stated in the struct level documentation the lookup will proceed from
268 /// the current scope to the root scope, returning `Some` when a variable is
269 /// found or `None` if there doesn't exist a variable with `name` in any
270 /// scope.
271 pub fn lookup<Q: ?Sized>(&self, name: &Q) -> Option<&Var>
272 where
273 Name: std::borrow::Borrow<Q>,
274 Q: std::hash::Hash + Eq,
275 {
276 // Iterate backwards trough the scopes and try to find the variable
277 for scope in self.scopes[..self.cursor].iter().rev() {
278 if let Some(var) = scope.get(name) {
279 return Some(var);
280 }
281 }
282
283 None
284 }
285
286 /// Adds a new variable to the current scope.
287 ///
288 /// Returns the previous variable with the same name in this scope if it
289 /// exists, so that the frontend might handle it in case variable shadowing
290 /// is disallowed.
291 pub fn add(&mut self, name: Name, var: Var) -> Option<Var> {
292 self.scopes[self.cursor - 1].insert(name, var)
293 }
294
295 /// Adds a new variable to the root scope.
296 ///
297 /// This is used in GLSL for builtins which aren't known in advance and only
298 /// when used for the first time, so there must be a way to add those
299 /// declarations to the root unconditionally from the current scope.
300 ///
301 /// Returns the previous variable with the same name in the root scope if it
302 /// exists, so that the frontend might handle it in case variable shadowing
303 /// is disallowed.
304 pub fn add_root(&mut self, name: Name, var: Var) -> Option<Var> {
305 self.scopes[0].insert(name, var)
306 }
307}
308
309impl<Name, Var> Default for SymbolTable<Name, Var> {
310 /// Constructs a new symbol table with a root scope
311 fn default() -> Self {
312 Self {
313 scopes: vec![FastHashMap::default()],
314 cursor: 1,
315 }
316 }
317}
318
319use std::fmt;
320
321impl<Name: fmt::Debug, Var: fmt::Debug> fmt::Debug for SymbolTable<Name, Var> {
322 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
323 f.write_str("SymbolTable ")?;
324 f.debug_list()
325 .entries(self.scopes[..self.cursor].iter())
326 .finish()
327 }
328}