naga/lib.rs
1/*! Universal shader translator.
2
3The central structure of the crate is [`Module`]. A `Module` contains:
4
5- [`Function`]s, which have arguments, a return type, local variables, and a body,
6
7- [`EntryPoint`]s, which are specialized functions that can serve as the entry
8 point for pipeline stages like vertex shading or fragment shading,
9
10- [`Constant`]s and [`GlobalVariable`]s used by `EntryPoint`s and `Function`s, and
11
12- [`Type`]s used by the above.
13
14The body of an `EntryPoint` or `Function` is represented using two types:
15
16- An [`Expression`] produces a value, but has no side effects or control flow.
17 `Expressions` include variable references, unary and binary operators, and so
18 on.
19
20- A [`Statement`] can have side effects and structured control flow.
21 `Statement`s do not produce a value, other than by storing one in some
22 designated place. `Statements` include blocks, conditionals, and loops, but also
23 operations that have side effects, like stores and function calls.
24
25`Statement`s form a tree, with pointers into the DAG of `Expression`s.
26
27Restricting side effects to statements simplifies analysis and code generation.
28A Naga backend can generate code to evaluate an `Expression` however and
29whenever it pleases, as long as it is certain to observe the side effects of all
30previously executed `Statement`s.
31
32Many `Statement` variants use the [`Block`] type, which is `Vec<Statement>`,
33with optional span info, representing a series of statements executed in order. The body of an
34`EntryPoint`s or `Function` is a `Block`, and `Statement` has a
35[`Block`][Statement::Block] variant.
36
37## Arenas
38
39To improve translator performance and reduce memory usage, most structures are
40stored in an [`Arena`]. An `Arena<T>` stores a series of `T` values, indexed by
41[`Handle<T>`](Handle) values, which are just wrappers around integer indexes.
42For example, a `Function`'s expressions are stored in an `Arena<Expression>`,
43and compound expressions refer to their sub-expressions via `Handle<Expression>`
44values. (When examining the serialized form of a `Module`, note that the first
45element of an `Arena` has an index of 1, not 0.)
46
47A [`UniqueArena`] is just like an `Arena`, except that it stores only a single
48instance of each value. The value type must implement `Eq` and `Hash`. Like an
49`Arena`, inserting a value into a `UniqueArena` returns a `Handle` which can be
50used to efficiently access the value, without a hash lookup. Inserting a value
51multiple times returns the same `Handle`.
52
53If the `span` feature is enabled, both `Arena` and `UniqueArena` can associate a
54source code span with each element.
55
56## Function Calls
57
58Naga's representation of function calls is unusual. Most languages treat
59function calls as expressions, but because calls may have side effects, Naga
60represents them as a kind of statement, [`Statement::Call`]. If the function
61returns a value, a call statement designates a particular [`Expression::CallResult`]
62expression to represent its return value, for use by subsequent statements and
63expressions.
64
65## `Expression` evaluation time
66
67It is essential to know when an [`Expression`] should be evaluated, because its
68value may depend on previous [`Statement`]s' effects. But whereas the order of
69execution for a tree of `Statement`s is apparent from its structure, it is not
70so clear for `Expressions`, since an expression may be referred to by any number
71of `Statement`s and other `Expression`s.
72
73Naga's rules for when `Expression`s are evaluated are as follows:
74
75- [`Literal`], [`Constant`], and [`ZeroValue`] expressions are
76 considered to be implicitly evaluated before execution begins.
77
78- [`FunctionArgument`] and [`LocalVariable`] expressions are considered
79 implicitly evaluated upon entry to the function to which they belong.
80 Function arguments cannot be assigned to, and `LocalVariable` expressions
81 produce a *pointer to* the variable's value (for use with [`Load`] and
82 [`Store`]). Neither varies while the function executes, so it suffices to
83 consider these expressions evaluated once on entry.
84
85- Similarly, [`GlobalVariable`] expressions are considered implicitly
86 evaluated before execution begins, since their value does not change while
87 code executes, for one of two reasons:
88
89 - Most `GlobalVariable` expressions produce a pointer to the variable's
90 value, for use with [`Load`] and [`Store`], as `LocalVariable`
91 expressions do. Although the variable's value may change, its address
92 does not.
93
94 - A `GlobalVariable` expression referring to a global in the
95 [`AddressSpace::Handle`] address space produces the value directly, not
96 a pointer. Such global variables hold opaque types like shaders or
97 images, and cannot be assigned to.
98
99- A [`CallResult`] expression that is the `result` of a [`Statement::Call`],
100 representing the call's return value, is evaluated when the `Call` statement
101 is executed.
102
103- Similarly, an [`AtomicResult`] expression that is the `result` of an
104 [`Atomic`] statement, representing the result of the atomic operation, is
105 evaluated when the `Atomic` statement is executed.
106
107- A [`RayQueryProceedResult`] expression, which is a boolean
108 indicating if the ray query is finished, is evaluated when the
109 [`RayQuery`] statement whose [`Proceed::result`] points to it is
110 executed.
111
112- All other expressions are evaluated when the (unique) [`Statement::Emit`]
113 statement that covers them is executed.
114
115Now, strictly speaking, not all `Expression` variants actually care when they're
116evaluated. For example, you can evaluate a [`BinaryOperator::Add`] expression
117any time you like, as long as you give it the right operands. It's really only a
118very small set of expressions that are affected by timing:
119
120- [`Load`], [`ImageSample`], and [`ImageLoad`] expressions are influenced by
121 stores to the variables or images they access, and must execute at the
122 proper time relative to them.
123
124- [`Derivative`] expressions are sensitive to control flow uniformity: they
125 must not be moved out of an area of uniform control flow into a non-uniform
126 area.
127
128- More generally, any expression that's used by more than one other expression
129 or statement should probably be evaluated only once, and then stored in a
130 variable to be cited at each point of use.
131
132Naga tries to help back ends handle all these cases correctly in a somewhat
133circuitous way. The [`ModuleInfo`] structure returned by [`Validator::validate`]
134provides a reference count for each expression in each function in the module.
135Naturally, any expression with a reference count of two or more deserves to be
136evaluated and stored in a temporary variable at the point that the `Emit`
137statement covering it is executed. But if we selectively lower the reference
138count threshold to _one_ for the sensitive expression types listed above, so
139that we _always_ generate a temporary variable and save their value, then the
140same code that manages multiply referenced expressions will take care of
141introducing temporaries for time-sensitive expressions as well. The
142`Expression::bake_ref_count` method (private to the back ends) is meant to help
143with this.
144
145## `Expression` scope
146
147Each `Expression` has a *scope*, which is the region of the function within
148which it can be used by `Statement`s and other `Expression`s. It is a validation
149error to use an `Expression` outside its scope.
150
151An expression's scope is defined as follows:
152
153- The scope of a [`Constant`], [`GlobalVariable`], [`FunctionArgument`] or
154 [`LocalVariable`] expression covers the entire `Function` in which it
155 occurs.
156
157- The scope of an expression evaluated by an [`Emit`] statement covers the
158 subsequent expressions in that `Emit`, the subsequent statements in the `Block`
159 to which that `Emit` belongs (if any) and their sub-statements (if any).
160
161- The `result` expression of a [`Call`] or [`Atomic`] statement has a scope
162 covering the subsequent statements in the `Block` in which the statement
163 occurs (if any) and their sub-statements (if any).
164
165For example, this implies that an expression evaluated by some statement in a
166nested `Block` is not available in the `Block`'s parents. Such a value would
167need to be stored in a local variable to be carried upwards in the statement
168tree.
169
170## Constant expressions
171
172A Naga *constant expression* is one of the following [`Expression`]
173variants, whose operands (if any) are also constant expressions:
174- [`Literal`]
175- [`Constant`], for [`Constant`]s
176- [`ZeroValue`], for fixed-size types
177- [`Compose`]
178- [`Access`]
179- [`AccessIndex`]
180- [`Splat`]
181- [`Swizzle`]
182- [`Unary`]
183- [`Binary`]
184- [`Select`]
185- [`Relational`]
186- [`Math`]
187- [`As`]
188
189A constant expression can be evaluated at module translation time.
190
191## Override expressions
192
193A Naga *override expression* is the same as a [constant expression],
194except that it is also allowed to reference other [`Override`]s.
195
196An override expression can be evaluated at pipeline creation time.
197
198[`AtomicResult`]: Expression::AtomicResult
199[`RayQueryProceedResult`]: Expression::RayQueryProceedResult
200[`CallResult`]: Expression::CallResult
201[`Constant`]: Expression::Constant
202[`ZeroValue`]: Expression::ZeroValue
203[`Literal`]: Expression::Literal
204[`Derivative`]: Expression::Derivative
205[`FunctionArgument`]: Expression::FunctionArgument
206[`GlobalVariable`]: Expression::GlobalVariable
207[`ImageLoad`]: Expression::ImageLoad
208[`ImageSample`]: Expression::ImageSample
209[`Load`]: Expression::Load
210[`LocalVariable`]: Expression::LocalVariable
211
212[`Atomic`]: Statement::Atomic
213[`Call`]: Statement::Call
214[`Emit`]: Statement::Emit
215[`Store`]: Statement::Store
216[`RayQuery`]: Statement::RayQuery
217
218[`Proceed::result`]: RayQueryFunction::Proceed::result
219
220[`Validator::validate`]: valid::Validator::validate
221[`ModuleInfo`]: valid::ModuleInfo
222
223[`Literal`]: Expression::Literal
224[`ZeroValue`]: Expression::ZeroValue
225[`Compose`]: Expression::Compose
226[`Access`]: Expression::Access
227[`AccessIndex`]: Expression::AccessIndex
228[`Splat`]: Expression::Splat
229[`Swizzle`]: Expression::Swizzle
230[`Unary`]: Expression::Unary
231[`Binary`]: Expression::Binary
232[`Select`]: Expression::Select
233[`Relational`]: Expression::Relational
234[`Math`]: Expression::Math
235[`As`]: Expression::As
236
237[constant expression]: index.html#constant-expressions
238*/
239
240#![allow(
241 clippy::new_without_default,
242 clippy::unneeded_field_pattern,
243 clippy::match_like_matches_macro,
244 clippy::collapsible_if,
245 clippy::derive_partial_eq_without_eq,
246 clippy::needless_borrowed_reference,
247 clippy::single_match,
248 clippy::enum_variant_names
249)]
250#![warn(
251 trivial_casts,
252 trivial_numeric_casts,
253 unused_extern_crates,
254 unused_qualifications,
255 clippy::pattern_type_mismatch,
256 clippy::missing_const_for_fn,
257 clippy::rest_pat_in_fully_bound_structs,
258 clippy::match_wildcard_for_single_variants
259)]
260#![deny(clippy::exit)]
261#![cfg_attr(
262 not(test),
263 warn(
264 clippy::dbg_macro,
265 clippy::panic,
266 clippy::print_stderr,
267 clippy::print_stdout,
268 clippy::todo
269 )
270)]
271
272mod arena;
273pub mod back;
274mod block;
275#[cfg(feature = "compact")]
276pub mod compact;
277pub mod front;
278pub mod keywords;
279pub mod proc;
280mod span;
281pub mod valid;
282
283pub use crate::arena::{Arena, Handle, Range, UniqueArena};
284
285pub use crate::span::{SourceLocation, Span, SpanContext, WithSpan};
286#[cfg(feature = "arbitrary")]
287use arbitrary::Arbitrary;
288#[cfg(feature = "deserialize")]
289use serde::Deserialize;
290#[cfg(feature = "serialize")]
291use serde::Serialize;
292
293/// Width of a boolean type, in bytes.
294pub const BOOL_WIDTH: Bytes = 1;
295
296/// Width of abstract types, in bytes.
297pub const ABSTRACT_WIDTH: Bytes = 8;
298
299/// Hash map that is faster but not resilient to DoS attacks.
300pub type FastHashMap<K, T> = rustc_hash::FxHashMap<K, T>;
301/// Hash set that is faster but not resilient to DoS attacks.
302pub type FastHashSet<K> = rustc_hash::FxHashSet<K>;
303
304/// Insertion-order-preserving hash set (`IndexSet<K>`), but with the same
305/// hasher as `FastHashSet<K>` (faster but not resilient to DoS attacks).
306pub type FastIndexSet<K> =
307 indexmap::IndexSet<K, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
308
309/// Insertion-order-preserving hash map (`IndexMap<K, V>`), but with the same
310/// hasher as `FastHashMap<K, V>` (faster but not resilient to DoS attacks).
311pub type FastIndexMap<K, V> =
312 indexmap::IndexMap<K, V, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>;
313
314/// Map of expressions that have associated variable names
315pub(crate) type NamedExpressions = FastIndexMap<Handle<Expression>, String>;
316
317/// Early fragment tests.
318///
319/// In a standard situation, if a driver determines that it is possible to switch on early depth test, it will.
320///
321/// Typical situations when early depth test is switched off:
322/// - Calling `discard` in a shader.
323/// - Writing to the depth buffer, unless ConservativeDepth is enabled.
324///
325/// To use in a shader:
326/// - GLSL: `layout(early_fragment_tests) in;`
327/// - HLSL: `Attribute earlydepthstencil`
328/// - SPIR-V: `ExecutionMode EarlyFragmentTests`
329/// - WGSL: `@early_depth_test`
330///
331/// For more, see:
332/// - <https://www.khronos.org/opengl/wiki/Early_Fragment_Test#Explicit_specification>
333/// - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/sm5-attributes-earlydepthstencil>
334/// - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
335#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
336#[cfg_attr(feature = "serialize", derive(Serialize))]
337#[cfg_attr(feature = "deserialize", derive(Deserialize))]
338#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
339pub struct EarlyDepthTest {
340 pub conservative: Option<ConservativeDepth>,
341}
342/// Enables adjusting depth without disabling early Z.
343///
344/// To use in a shader:
345/// - GLSL: `layout (depth_<greater/less/unchanged/any>) out float gl_FragDepth;`
346/// - `depth_any` option behaves as if the layout qualifier was not present.
347/// - HLSL: `SV_DepthGreaterEqual`/`SV_DepthLessEqual`/`SV_Depth`
348/// - SPIR-V: `ExecutionMode Depth<Greater/Less/Unchanged>`
349/// - WGSL: `@early_depth_test(greater_equal/less_equal/unchanged)`
350///
351/// For more, see:
352/// - <https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_conservative_depth.txt>
353/// - <https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-semantics#system-value-semantics>
354/// - <https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#Execution_Mode>
355#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
356#[cfg_attr(feature = "serialize", derive(Serialize))]
357#[cfg_attr(feature = "deserialize", derive(Deserialize))]
358#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
359pub enum ConservativeDepth {
360 /// Shader may rewrite depth only with a value greater than calculated.
361 GreaterEqual,
362
363 /// Shader may rewrite depth smaller than one that would have been written without the modification.
364 LessEqual,
365
366 /// Shader may not rewrite depth value.
367 Unchanged,
368}
369
370/// Stage of the programmable pipeline.
371#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
372#[cfg_attr(feature = "serialize", derive(Serialize))]
373#[cfg_attr(feature = "deserialize", derive(Deserialize))]
374#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
375#[allow(missing_docs)] // The names are self evident
376pub enum ShaderStage {
377 Vertex,
378 Fragment,
379 Compute,
380}
381
382/// Addressing space of variables.
383#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
384#[cfg_attr(feature = "serialize", derive(Serialize))]
385#[cfg_attr(feature = "deserialize", derive(Deserialize))]
386#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
387pub enum AddressSpace {
388 /// Function locals.
389 Function,
390 /// Private data, per invocation, mutable.
391 Private,
392 /// Workgroup shared data, mutable.
393 WorkGroup,
394 /// Uniform buffer data.
395 Uniform,
396 /// Storage buffer data, potentially mutable.
397 Storage { access: StorageAccess },
398 /// Opaque handles, such as samplers and images.
399 Handle,
400 /// Push constants.
401 PushConstant,
402}
403
404/// Built-in inputs and outputs.
405#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
406#[cfg_attr(feature = "serialize", derive(Serialize))]
407#[cfg_attr(feature = "deserialize", derive(Deserialize))]
408#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
409pub enum BuiltIn {
410 Position { invariant: bool },
411 ViewIndex,
412 // vertex
413 BaseInstance,
414 BaseVertex,
415 ClipDistance,
416 CullDistance,
417 InstanceIndex,
418 PointSize,
419 VertexIndex,
420 // fragment
421 FragDepth,
422 PointCoord,
423 FrontFacing,
424 PrimitiveIndex,
425 SampleIndex,
426 SampleMask,
427 // compute
428 GlobalInvocationId,
429 LocalInvocationId,
430 LocalInvocationIndex,
431 WorkGroupId,
432 WorkGroupSize,
433 NumWorkGroups,
434 // subgroup
435 NumSubgroups,
436 SubgroupId,
437 SubgroupSize,
438 SubgroupInvocationId,
439}
440
441/// Number of bytes per scalar.
442pub type Bytes = u8;
443
444/// Number of components in a vector.
445#[repr(u8)]
446#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
447#[cfg_attr(feature = "serialize", derive(Serialize))]
448#[cfg_attr(feature = "deserialize", derive(Deserialize))]
449#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
450pub enum VectorSize {
451 /// 2D vector
452 Bi = 2,
453 /// 3D vector
454 Tri = 3,
455 /// 4D vector
456 Quad = 4,
457}
458
459impl VectorSize {
460 const MAX: usize = Self::Quad as u8 as usize;
461}
462
463/// Primitive type for a scalar.
464#[repr(u8)]
465#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
466#[cfg_attr(feature = "serialize", derive(Serialize))]
467#[cfg_attr(feature = "deserialize", derive(Deserialize))]
468#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
469pub enum ScalarKind {
470 /// Signed integer type.
471 Sint,
472 /// Unsigned integer type.
473 Uint,
474 /// Floating point type.
475 Float,
476 /// Boolean type.
477 Bool,
478
479 /// WGSL abstract integer type.
480 ///
481 /// These are forbidden by validation, and should never reach backends.
482 AbstractInt,
483
484 /// Abstract floating-point type.
485 ///
486 /// These are forbidden by validation, and should never reach backends.
487 AbstractFloat,
488}
489
490/// Characteristics of a scalar type.
491#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
492#[cfg_attr(feature = "serialize", derive(Serialize))]
493#[cfg_attr(feature = "deserialize", derive(Deserialize))]
494#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
495pub struct Scalar {
496 /// How the value's bits are to be interpreted.
497 pub kind: ScalarKind,
498
499 /// This size of the value in bytes.
500 pub width: Bytes,
501}
502
503/// Size of an array.
504#[repr(u8)]
505#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
506#[cfg_attr(feature = "serialize", derive(Serialize))]
507#[cfg_attr(feature = "deserialize", derive(Deserialize))]
508#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
509pub enum ArraySize {
510 /// The array size is constant.
511 Constant(std::num::NonZeroU32),
512 /// The array size can change at runtime.
513 Dynamic,
514}
515
516/// The interpolation qualifier of a binding or struct field.
517#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
518#[cfg_attr(feature = "serialize", derive(Serialize))]
519#[cfg_attr(feature = "deserialize", derive(Deserialize))]
520#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
521pub enum Interpolation {
522 /// The value will be interpolated in a perspective-correct fashion.
523 /// Also known as "smooth" in glsl.
524 Perspective,
525 /// Indicates that linear, non-perspective, correct
526 /// interpolation must be used.
527 /// Also known as "no_perspective" in glsl.
528 Linear,
529 /// Indicates that no interpolation will be performed.
530 Flat,
531}
532
533/// The sampling qualifiers of a binding or struct field.
534#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
535#[cfg_attr(feature = "serialize", derive(Serialize))]
536#[cfg_attr(feature = "deserialize", derive(Deserialize))]
537#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
538pub enum Sampling {
539 /// Interpolate the value at the center of the pixel.
540 Center,
541
542 /// Interpolate the value at a point that lies within all samples covered by
543 /// the fragment within the current primitive. In multisampling, use a
544 /// single value for all samples in the primitive.
545 Centroid,
546
547 /// Interpolate the value at each sample location. In multisampling, invoke
548 /// the fragment shader once per sample.
549 Sample,
550}
551
552/// Member of a user-defined structure.
553// Clone is used only for error reporting and is not intended for end users
554#[derive(Clone, Debug, Eq, Hash, PartialEq)]
555#[cfg_attr(feature = "serialize", derive(Serialize))]
556#[cfg_attr(feature = "deserialize", derive(Deserialize))]
557#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
558pub struct StructMember {
559 pub name: Option<String>,
560 /// Type of the field.
561 pub ty: Handle<Type>,
562 /// For I/O structs, defines the binding.
563 pub binding: Option<Binding>,
564 /// Offset from the beginning from the struct.
565 pub offset: u32,
566}
567
568/// The number of dimensions an image has.
569#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
570#[cfg_attr(feature = "serialize", derive(Serialize))]
571#[cfg_attr(feature = "deserialize", derive(Deserialize))]
572#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
573pub enum ImageDimension {
574 /// 1D image
575 D1,
576 /// 2D image
577 D2,
578 /// 3D image
579 D3,
580 /// Cube map
581 Cube,
582}
583
584bitflags::bitflags! {
585 /// Flags describing an image.
586 #[cfg_attr(feature = "serialize", derive(Serialize))]
587 #[cfg_attr(feature = "deserialize", derive(Deserialize))]
588 #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
589 #[derive(Clone, Copy, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
590 pub struct StorageAccess: u32 {
591 /// Storage can be used as a source for load ops.
592 const LOAD = 0x1;
593 /// Storage can be used as a target for store ops.
594 const STORE = 0x2;
595 }
596}
597
598/// Image storage format.
599#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
600#[cfg_attr(feature = "serialize", derive(Serialize))]
601#[cfg_attr(feature = "deserialize", derive(Deserialize))]
602#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
603pub enum StorageFormat {
604 // 8-bit formats
605 R8Unorm,
606 R8Snorm,
607 R8Uint,
608 R8Sint,
609
610 // 16-bit formats
611 R16Uint,
612 R16Sint,
613 R16Float,
614 Rg8Unorm,
615 Rg8Snorm,
616 Rg8Uint,
617 Rg8Sint,
618
619 // 32-bit formats
620 R32Uint,
621 R32Sint,
622 R32Float,
623 Rg16Uint,
624 Rg16Sint,
625 Rg16Float,
626 Rgba8Unorm,
627 Rgba8Snorm,
628 Rgba8Uint,
629 Rgba8Sint,
630 Bgra8Unorm,
631
632 // Packed 32-bit formats
633 Rgb10a2Uint,
634 Rgb10a2Unorm,
635 Rg11b10Float,
636
637 // 64-bit formats
638 Rg32Uint,
639 Rg32Sint,
640 Rg32Float,
641 Rgba16Uint,
642 Rgba16Sint,
643 Rgba16Float,
644
645 // 128-bit formats
646 Rgba32Uint,
647 Rgba32Sint,
648 Rgba32Float,
649
650 // Normalized 16-bit per channel formats
651 R16Unorm,
652 R16Snorm,
653 Rg16Unorm,
654 Rg16Snorm,
655 Rgba16Unorm,
656 Rgba16Snorm,
657}
658
659/// Sub-class of the image type.
660#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
661#[cfg_attr(feature = "serialize", derive(Serialize))]
662#[cfg_attr(feature = "deserialize", derive(Deserialize))]
663#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
664pub enum ImageClass {
665 /// Regular sampled image.
666 Sampled {
667 /// Kind of values to sample.
668 kind: ScalarKind,
669 /// Multi-sampled image.
670 ///
671 /// A multi-sampled image holds several samples per texel. Multi-sampled
672 /// images cannot have mipmaps.
673 multi: bool,
674 },
675 /// Depth comparison image.
676 Depth {
677 /// Multi-sampled depth image.
678 multi: bool,
679 },
680 /// Storage image.
681 Storage {
682 format: StorageFormat,
683 access: StorageAccess,
684 },
685}
686
687/// A data type declared in the module.
688#[derive(Clone, Debug, Eq, Hash, PartialEq)]
689#[cfg_attr(feature = "serialize", derive(Serialize))]
690#[cfg_attr(feature = "deserialize", derive(Deserialize))]
691#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
692pub struct Type {
693 /// The name of the type, if any.
694 pub name: Option<String>,
695 /// Inner structure that depends on the kind of the type.
696 pub inner: TypeInner,
697}
698
699/// Enum with additional information, depending on the kind of type.
700#[derive(Clone, Debug, Eq, Hash, PartialEq)]
701#[cfg_attr(feature = "serialize", derive(Serialize))]
702#[cfg_attr(feature = "deserialize", derive(Deserialize))]
703#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
704pub enum TypeInner {
705 /// Number of integral or floating-point kind.
706 Scalar(Scalar),
707 /// Vector of numbers.
708 Vector { size: VectorSize, scalar: Scalar },
709 /// Matrix of numbers.
710 Matrix {
711 columns: VectorSize,
712 rows: VectorSize,
713 scalar: Scalar,
714 },
715 /// Atomic scalar.
716 Atomic(Scalar),
717 /// Pointer to another type.
718 ///
719 /// Pointers to scalars and vectors should be treated as equivalent to
720 /// [`ValuePointer`] types. Use the [`TypeInner::equivalent`] method to
721 /// compare types in a way that treats pointers correctly.
722 ///
723 /// ## Pointers to non-`SIZED` types
724 ///
725 /// The `base` type of a pointer may be a non-[`SIZED`] type like a
726 /// dynamically-sized [`Array`], or a [`Struct`] whose last member is a
727 /// dynamically sized array. Such pointers occur as the types of
728 /// [`GlobalVariable`] or [`AccessIndex`] expressions referring to
729 /// dynamically-sized arrays.
730 ///
731 /// However, among pointers to non-`SIZED` types, only pointers to `Struct`s
732 /// are [`DATA`]. Pointers to dynamically sized `Array`s cannot be passed as
733 /// arguments, stored in variables, or held in arrays or structures. Their
734 /// only use is as the types of `AccessIndex` expressions.
735 ///
736 /// [`SIZED`]: valid::TypeFlags::SIZED
737 /// [`DATA`]: valid::TypeFlags::DATA
738 /// [`Array`]: TypeInner::Array
739 /// [`Struct`]: TypeInner::Struct
740 /// [`ValuePointer`]: TypeInner::ValuePointer
741 /// [`GlobalVariable`]: Expression::GlobalVariable
742 /// [`AccessIndex`]: Expression::AccessIndex
743 Pointer {
744 base: Handle<Type>,
745 space: AddressSpace,
746 },
747
748 /// Pointer to a scalar or vector.
749 ///
750 /// A `ValuePointer` type is equivalent to a `Pointer` whose `base` is a
751 /// `Scalar` or `Vector` type. This is for use in [`TypeResolution::Value`]
752 /// variants; see the documentation for [`TypeResolution`] for details.
753 ///
754 /// Use the [`TypeInner::equivalent`] method to compare types that could be
755 /// pointers, to ensure that `Pointer` and `ValuePointer` types are
756 /// recognized as equivalent.
757 ///
758 /// [`TypeResolution`]: proc::TypeResolution
759 /// [`TypeResolution::Value`]: proc::TypeResolution::Value
760 ValuePointer {
761 size: Option<VectorSize>,
762 scalar: Scalar,
763 space: AddressSpace,
764 },
765
766 /// Homogeneous list of elements.
767 ///
768 /// The `base` type must be a [`SIZED`], [`DATA`] type.
769 ///
770 /// ## Dynamically sized arrays
771 ///
772 /// An `Array` is [`SIZED`] unless its `size` is [`Dynamic`].
773 /// Dynamically-sized arrays may only appear in a few situations:
774 ///
775 /// - They may appear as the type of a [`GlobalVariable`], or as the last
776 /// member of a [`Struct`].
777 ///
778 /// - They may appear as the base type of a [`Pointer`]. An
779 /// [`AccessIndex`] expression referring to a struct's final
780 /// unsized array member would have such a pointer type. However, such
781 /// pointer types may only appear as the types of such intermediate
782 /// expressions. They are not [`DATA`], and cannot be stored in
783 /// variables, held in arrays or structs, or passed as parameters.
784 ///
785 /// [`SIZED`]: crate::valid::TypeFlags::SIZED
786 /// [`DATA`]: crate::valid::TypeFlags::DATA
787 /// [`Dynamic`]: ArraySize::Dynamic
788 /// [`Struct`]: TypeInner::Struct
789 /// [`Pointer`]: TypeInner::Pointer
790 /// [`AccessIndex`]: Expression::AccessIndex
791 Array {
792 base: Handle<Type>,
793 size: ArraySize,
794 stride: u32,
795 },
796
797 /// User-defined structure.
798 ///
799 /// There must always be at least one member.
800 ///
801 /// A `Struct` type is [`DATA`], and the types of its members must be
802 /// `DATA` as well.
803 ///
804 /// Member types must be [`SIZED`], except for the final member of a
805 /// struct, which may be a dynamically sized [`Array`]. The
806 /// `Struct` type itself is `SIZED` when all its members are `SIZED`.
807 ///
808 /// [`DATA`]: crate::valid::TypeFlags::DATA
809 /// [`SIZED`]: crate::valid::TypeFlags::SIZED
810 /// [`Array`]: TypeInner::Array
811 Struct {
812 members: Vec<StructMember>,
813 //TODO: should this be unaligned?
814 span: u32,
815 },
816 /// Possibly multidimensional array of texels.
817 Image {
818 dim: ImageDimension,
819 arrayed: bool,
820 //TODO: consider moving `multisampled: bool` out
821 class: ImageClass,
822 },
823 /// Can be used to sample values from images.
824 Sampler { comparison: bool },
825
826 /// Opaque object representing an acceleration structure of geometry.
827 AccelerationStructure,
828
829 /// Locally used handle for ray queries.
830 RayQuery,
831
832 /// Array of bindings.
833 ///
834 /// A `BindingArray` represents an array where each element draws its value
835 /// from a separate bound resource. The array's element type `base` may be
836 /// [`Image`], [`Sampler`], or any type that would be permitted for a global
837 /// in the [`Uniform`] or [`Storage`] address spaces. Only global variables
838 /// may be binding arrays; on the host side, their values are provided by
839 /// [`TextureViewArray`], [`SamplerArray`], or [`BufferArray`]
840 /// bindings.
841 ///
842 /// Since each element comes from a distinct resource, a binding array of
843 /// images could have images of varying sizes (but not varying dimensions;
844 /// they must all have the same `Image` type). Or, a binding array of
845 /// buffers could have elements that are dynamically sized arrays, each with
846 /// a different length.
847 ///
848 /// Binding arrays are in the same address spaces as their underlying type.
849 /// As such, referring to an array of images produces an [`Image`] value
850 /// directly (as opposed to a pointer). The only operation permitted on
851 /// `BindingArray` values is indexing, which works transparently: indexing
852 /// a binding array of samplers yields a [`Sampler`], indexing a pointer to the
853 /// binding array of storage buffers produces a pointer to the storage struct.
854 ///
855 /// Unlike textures and samplers, binding arrays are not [`ARGUMENT`], so
856 /// they cannot be passed as arguments to functions.
857 ///
858 /// Naga's WGSL front end supports binding arrays with the type syntax
859 /// `binding_array<T, N>`.
860 ///
861 /// [`Image`]: TypeInner::Image
862 /// [`Sampler`]: TypeInner::Sampler
863 /// [`Uniform`]: AddressSpace::Uniform
864 /// [`Storage`]: AddressSpace::Storage
865 /// [`TextureViewArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.TextureViewArray
866 /// [`SamplerArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.SamplerArray
867 /// [`BufferArray`]: https://docs.rs/wgpu/latest/wgpu/enum.BindingResource.html#variant.BufferArray
868 /// [`DATA`]: crate::valid::TypeFlags::DATA
869 /// [`ARGUMENT`]: crate::valid::TypeFlags::ARGUMENT
870 /// [naga#1864]: https://github.com/gfx-rs/naga/issues/1864
871 BindingArray { base: Handle<Type>, size: ArraySize },
872}
873
874#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
875#[cfg_attr(feature = "serialize", derive(Serialize))]
876#[cfg_attr(feature = "deserialize", derive(Deserialize))]
877#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
878pub enum Literal {
879 /// May not be NaN or infinity.
880 F64(f64),
881 /// May not be NaN or infinity.
882 F32(f32),
883 U32(u32),
884 I32(i32),
885 U64(u64),
886 I64(i64),
887 Bool(bool),
888 AbstractInt(i64),
889 AbstractFloat(f64),
890}
891
892/// Pipeline-overridable constant.
893#[derive(Debug, PartialEq, Clone)]
894#[cfg_attr(feature = "serialize", derive(Serialize))]
895#[cfg_attr(feature = "deserialize", derive(Deserialize))]
896#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
897pub struct Override {
898 pub name: Option<String>,
899 /// Pipeline Constant ID.
900 pub id: Option<u16>,
901 pub ty: Handle<Type>,
902
903 /// The default value of the pipeline-overridable constant.
904 ///
905 /// This [`Handle`] refers to [`Module::global_expressions`], not
906 /// any [`Function::expressions`] arena.
907 pub init: Option<Handle<Expression>>,
908}
909
910/// Constant value.
911#[derive(Debug, PartialEq, Clone)]
912#[cfg_attr(feature = "serialize", derive(Serialize))]
913#[cfg_attr(feature = "deserialize", derive(Deserialize))]
914#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
915pub struct Constant {
916 pub name: Option<String>,
917 pub ty: Handle<Type>,
918
919 /// The value of the constant.
920 ///
921 /// This [`Handle`] refers to [`Module::global_expressions`], not
922 /// any [`Function::expressions`] arena.
923 pub init: Handle<Expression>,
924}
925
926/// Describes how an input/output variable is to be bound.
927#[derive(Clone, Debug, Eq, PartialEq, Hash)]
928#[cfg_attr(feature = "serialize", derive(Serialize))]
929#[cfg_attr(feature = "deserialize", derive(Deserialize))]
930#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
931pub enum Binding {
932 /// Built-in shader variable.
933 BuiltIn(BuiltIn),
934
935 /// Indexed location.
936 ///
937 /// Values passed from the [`Vertex`] stage to the [`Fragment`] stage must
938 /// have their `interpolation` defaulted (i.e. not `None`) by the front end
939 /// as appropriate for that language.
940 ///
941 /// For other stages, we permit interpolations even though they're ignored.
942 /// When a front end is parsing a struct type, it usually doesn't know what
943 /// stages will be using it for IO, so it's easiest if it can apply the
944 /// defaults to anything with a `Location` binding, just in case.
945 ///
946 /// For anything other than floating-point scalars and vectors, the
947 /// interpolation must be `Flat`.
948 ///
949 /// [`Vertex`]: crate::ShaderStage::Vertex
950 /// [`Fragment`]: crate::ShaderStage::Fragment
951 Location {
952 location: u32,
953 /// Indicates the 2nd input to the blender when dual-source blending.
954 second_blend_source: bool,
955 interpolation: Option<Interpolation>,
956 sampling: Option<Sampling>,
957 },
958}
959
960/// Pipeline binding information for global resources.
961#[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
962#[cfg_attr(feature = "serialize", derive(Serialize))]
963#[cfg_attr(feature = "deserialize", derive(Deserialize))]
964#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
965pub struct ResourceBinding {
966 /// The bind group index.
967 pub group: u32,
968 /// Binding number within the group.
969 pub binding: u32,
970}
971
972/// Variable defined at module level.
973#[derive(Clone, Debug, PartialEq)]
974#[cfg_attr(feature = "serialize", derive(Serialize))]
975#[cfg_attr(feature = "deserialize", derive(Deserialize))]
976#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
977pub struct GlobalVariable {
978 /// Name of the variable, if any.
979 pub name: Option<String>,
980 /// How this variable is to be stored.
981 pub space: AddressSpace,
982 /// For resources, defines the binding point.
983 pub binding: Option<ResourceBinding>,
984 /// The type of this variable.
985 pub ty: Handle<Type>,
986 /// Initial value for this variable.
987 ///
988 /// Expression handle lives in global_expressions
989 pub init: Option<Handle<Expression>>,
990}
991
992/// Variable defined at function level.
993#[derive(Clone, Debug)]
994#[cfg_attr(feature = "serialize", derive(Serialize))]
995#[cfg_attr(feature = "deserialize", derive(Deserialize))]
996#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
997pub struct LocalVariable {
998 /// Name of the variable, if any.
999 pub name: Option<String>,
1000 /// The type of this variable.
1001 pub ty: Handle<Type>,
1002 /// Initial value for this variable.
1003 ///
1004 /// This handle refers to this `LocalVariable`'s function's
1005 /// [`expressions`] arena, but it is required to be an evaluated
1006 /// override expression.
1007 ///
1008 /// [`expressions`]: Function::expressions
1009 pub init: Option<Handle<Expression>>,
1010}
1011
1012/// Operation that can be applied on a single value.
1013#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1014#[cfg_attr(feature = "serialize", derive(Serialize))]
1015#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1016#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1017pub enum UnaryOperator {
1018 Negate,
1019 LogicalNot,
1020 BitwiseNot,
1021}
1022
1023/// Operation that can be applied on two values.
1024///
1025/// ## Arithmetic type rules
1026///
1027/// The arithmetic operations `Add`, `Subtract`, `Multiply`, `Divide`, and
1028/// `Modulo` can all be applied to [`Scalar`] types other than [`Bool`], or
1029/// [`Vector`]s thereof. Both operands must have the same type.
1030///
1031/// `Add` and `Subtract` can also be applied to [`Matrix`] values. Both operands
1032/// must have the same type.
1033///
1034/// `Multiply` supports additional cases:
1035///
1036/// - A [`Matrix`] or [`Vector`] can be multiplied by a scalar [`Float`],
1037/// either on the left or the right.
1038///
1039/// - A [`Matrix`] on the left can be multiplied by a [`Vector`] on the right
1040/// if the matrix has as many columns as the vector has components (`matCxR
1041/// * VecC`).
1042///
1043/// - A [`Vector`] on the left can be multiplied by a [`Matrix`] on the right
1044/// if the matrix has as many rows as the vector has components (`VecR *
1045/// matCxR`).
1046///
1047/// - Two matrices can be multiplied if the left operand has as many columns
1048/// as the right operand has rows (`matNxR * matCxN`).
1049///
1050/// In all the above `Multiply` cases, the byte widths of the underlying scalar
1051/// types of both operands must be the same.
1052///
1053/// Note that `Multiply` supports mixed vector and scalar operations directly,
1054/// whereas the other arithmetic operations require an explicit [`Splat`] for
1055/// mixed-type use.
1056///
1057/// [`Scalar`]: TypeInner::Scalar
1058/// [`Vector`]: TypeInner::Vector
1059/// [`Matrix`]: TypeInner::Matrix
1060/// [`Float`]: ScalarKind::Float
1061/// [`Bool`]: ScalarKind::Bool
1062/// [`Splat`]: Expression::Splat
1063#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1064#[cfg_attr(feature = "serialize", derive(Serialize))]
1065#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1066#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1067pub enum BinaryOperator {
1068 Add,
1069 Subtract,
1070 Multiply,
1071 Divide,
1072 /// Equivalent of the WGSL's `%` operator or SPIR-V's `OpFRem`
1073 Modulo,
1074 Equal,
1075 NotEqual,
1076 Less,
1077 LessEqual,
1078 Greater,
1079 GreaterEqual,
1080 And,
1081 ExclusiveOr,
1082 InclusiveOr,
1083 LogicalAnd,
1084 LogicalOr,
1085 ShiftLeft,
1086 /// Right shift carries the sign of signed integers only.
1087 ShiftRight,
1088}
1089
1090/// Function on an atomic value.
1091///
1092/// Note: these do not include load/store, which use the existing
1093/// [`Expression::Load`] and [`Statement::Store`].
1094#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1095#[cfg_attr(feature = "serialize", derive(Serialize))]
1096#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1097#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1098pub enum AtomicFunction {
1099 Add,
1100 Subtract,
1101 And,
1102 ExclusiveOr,
1103 InclusiveOr,
1104 Min,
1105 Max,
1106 Exchange { compare: Option<Handle<Expression>> },
1107}
1108
1109/// Hint at which precision to compute a derivative.
1110#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1111#[cfg_attr(feature = "serialize", derive(Serialize))]
1112#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1113#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1114pub enum DerivativeControl {
1115 Coarse,
1116 Fine,
1117 None,
1118}
1119
1120/// Axis on which to compute a derivative.
1121#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1122#[cfg_attr(feature = "serialize", derive(Serialize))]
1123#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1124#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1125pub enum DerivativeAxis {
1126 X,
1127 Y,
1128 Width,
1129}
1130
1131/// Built-in shader function for testing relation between values.
1132#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1133#[cfg_attr(feature = "serialize", derive(Serialize))]
1134#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1135#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1136pub enum RelationalFunction {
1137 All,
1138 Any,
1139 IsNan,
1140 IsInf,
1141}
1142
1143/// Built-in shader function for math.
1144#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1145#[cfg_attr(feature = "serialize", derive(Serialize))]
1146#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1147#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1148pub enum MathFunction {
1149 // comparison
1150 Abs,
1151 Min,
1152 Max,
1153 Clamp,
1154 Saturate,
1155 // trigonometry
1156 Cos,
1157 Cosh,
1158 Sin,
1159 Sinh,
1160 Tan,
1161 Tanh,
1162 Acos,
1163 Asin,
1164 Atan,
1165 Atan2,
1166 Asinh,
1167 Acosh,
1168 Atanh,
1169 Radians,
1170 Degrees,
1171 // decomposition
1172 Ceil,
1173 Floor,
1174 Round,
1175 Fract,
1176 Trunc,
1177 Modf,
1178 Frexp,
1179 Ldexp,
1180 // exponent
1181 Exp,
1182 Exp2,
1183 Log,
1184 Log2,
1185 Pow,
1186 // geometry
1187 Dot,
1188 Outer,
1189 Cross,
1190 Distance,
1191 Length,
1192 Normalize,
1193 FaceForward,
1194 Reflect,
1195 Refract,
1196 // computational
1197 Sign,
1198 Fma,
1199 Mix,
1200 Step,
1201 SmoothStep,
1202 Sqrt,
1203 InverseSqrt,
1204 Inverse,
1205 Transpose,
1206 Determinant,
1207 // bits
1208 CountTrailingZeros,
1209 CountLeadingZeros,
1210 CountOneBits,
1211 ReverseBits,
1212 ExtractBits,
1213 InsertBits,
1214 FindLsb,
1215 FindMsb,
1216 // data packing
1217 Pack4x8snorm,
1218 Pack4x8unorm,
1219 Pack2x16snorm,
1220 Pack2x16unorm,
1221 Pack2x16float,
1222 // data unpacking
1223 Unpack4x8snorm,
1224 Unpack4x8unorm,
1225 Unpack2x16snorm,
1226 Unpack2x16unorm,
1227 Unpack2x16float,
1228}
1229
1230/// Sampling modifier to control the level of detail.
1231#[derive(Clone, Copy, Debug, PartialEq)]
1232#[cfg_attr(feature = "serialize", derive(Serialize))]
1233#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1234#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1235pub enum SampleLevel {
1236 Auto,
1237 Zero,
1238 Exact(Handle<Expression>),
1239 Bias(Handle<Expression>),
1240 Gradient {
1241 x: Handle<Expression>,
1242 y: Handle<Expression>,
1243 },
1244}
1245
1246/// Type of an image query.
1247#[derive(Clone, Copy, Debug, PartialEq)]
1248#[cfg_attr(feature = "serialize", derive(Serialize))]
1249#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1250#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1251pub enum ImageQuery {
1252 /// Get the size at the specified level.
1253 ///
1254 /// The return value is a `u32` for 1D images, and a `vecN<u32>`
1255 /// for an image with dimensions N > 2.
1256 Size {
1257 /// If `None`, the base level is considered.
1258 level: Option<Handle<Expression>>,
1259 },
1260 /// Get the number of mipmap levels, a `u32`.
1261 NumLevels,
1262 /// Get the number of array layers, a `u32`.
1263 NumLayers,
1264 /// Get the number of samples, a `u32`.
1265 NumSamples,
1266}
1267
1268/// Component selection for a vector swizzle.
1269#[repr(u8)]
1270#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
1271#[cfg_attr(feature = "serialize", derive(Serialize))]
1272#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1273#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1274pub enum SwizzleComponent {
1275 ///
1276 X = 0,
1277 ///
1278 Y = 1,
1279 ///
1280 Z = 2,
1281 ///
1282 W = 3,
1283}
1284
1285#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1286#[cfg_attr(feature = "serialize", derive(Serialize))]
1287#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1288#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1289pub enum GatherMode {
1290 /// All gather from the active lane with the smallest index
1291 BroadcastFirst,
1292 /// All gather from the same lane at the index given by the expression
1293 Broadcast(Handle<Expression>),
1294 /// Each gathers from a different lane at the index given by the expression
1295 Shuffle(Handle<Expression>),
1296 /// Each gathers from their lane plus the shift given by the expression
1297 ShuffleDown(Handle<Expression>),
1298 /// Each gathers from their lane minus the shift given by the expression
1299 ShuffleUp(Handle<Expression>),
1300 /// Each gathers from their lane xored with the given by the expression
1301 ShuffleXor(Handle<Expression>),
1302}
1303
1304#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1305#[cfg_attr(feature = "serialize", derive(Serialize))]
1306#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1307#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1308pub enum SubgroupOperation {
1309 All = 0,
1310 Any = 1,
1311 Add = 2,
1312 Mul = 3,
1313 Min = 4,
1314 Max = 5,
1315 And = 6,
1316 Or = 7,
1317 Xor = 8,
1318}
1319
1320#[derive(Clone, Copy, Debug, Hash, Eq, Ord, PartialEq, PartialOrd)]
1321#[cfg_attr(feature = "serialize", derive(Serialize))]
1322#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1323#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1324pub enum CollectiveOperation {
1325 Reduce = 0,
1326 InclusiveScan = 1,
1327 ExclusiveScan = 2,
1328}
1329
1330bitflags::bitflags! {
1331 /// Memory barrier flags.
1332 #[cfg_attr(feature = "serialize", derive(Serialize))]
1333 #[cfg_attr(feature = "deserialize", derive(Deserialize))]
1334 #[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1335 #[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
1336 pub struct Barrier: u32 {
1337 /// Barrier affects all `AddressSpace::Storage` accesses.
1338 const STORAGE = 1 << 0;
1339 /// Barrier affects all `AddressSpace::WorkGroup` accesses.
1340 const WORK_GROUP = 1 << 1;
1341 /// Barrier synchronizes execution across all invocations within a subgroup that exectue this instruction.
1342 const SUB_GROUP = 1 << 2;
1343 }
1344}
1345
1346/// An expression that can be evaluated to obtain a value.
1347///
1348/// This is a Single Static Assignment (SSA) scheme similar to SPIR-V.
1349#[derive(Clone, Debug, PartialEq)]
1350#[cfg_attr(feature = "serialize", derive(Serialize))]
1351#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1352#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1353pub enum Expression {
1354 /// Literal.
1355 Literal(Literal),
1356 /// Constant value.
1357 Constant(Handle<Constant>),
1358 /// Pipeline-overridable constant.
1359 Override(Handle<Override>),
1360 /// Zero value of a type.
1361 ZeroValue(Handle<Type>),
1362 /// Composite expression.
1363 Compose {
1364 ty: Handle<Type>,
1365 components: Vec<Handle<Expression>>,
1366 },
1367
1368 /// Array access with a computed index.
1369 ///
1370 /// ## Typing rules
1371 ///
1372 /// The `base` operand must be some composite type: [`Vector`], [`Matrix`],
1373 /// [`Array`], a [`Pointer`] to one of those, or a [`ValuePointer`] with a
1374 /// `size`.
1375 ///
1376 /// The `index` operand must be an integer, signed or unsigned.
1377 ///
1378 /// Indexing a [`Vector`] or [`Array`] produces a value of its element type.
1379 /// Indexing a [`Matrix`] produces a [`Vector`].
1380 ///
1381 /// Indexing a [`Pointer`] to any of the above produces a pointer to the
1382 /// element/component type, in the same [`space`]. In the case of [`Array`],
1383 /// the result is an actual [`Pointer`], but for vectors and matrices, there
1384 /// may not be any type in the arena representing the component's type, so
1385 /// those produce [`ValuePointer`] types equivalent to the appropriate
1386 /// [`Pointer`].
1387 ///
1388 /// ## Dynamic indexing restrictions
1389 ///
1390 /// To accommodate restrictions in some of the shader languages that Naga
1391 /// targets, it is not permitted to subscript a matrix or array with a
1392 /// dynamically computed index unless that matrix or array appears behind a
1393 /// pointer. In other words, if the inner type of `base` is [`Array`] or
1394 /// [`Matrix`], then `index` must be a constant. But if the type of `base`
1395 /// is a [`Pointer`] to an array or matrix or a [`ValuePointer`] with a
1396 /// `size`, then the index may be any expression of integer type.
1397 ///
1398 /// You can use the [`Expression::is_dynamic_index`] method to determine
1399 /// whether a given index expression requires matrix or array base operands
1400 /// to be behind a pointer.
1401 ///
1402 /// (It would be simpler to always require the use of `AccessIndex` when
1403 /// subscripting arrays and matrices that are not behind pointers, but to
1404 /// accommodate existing front ends, Naga also permits `Access`, with a
1405 /// restricted `index`.)
1406 ///
1407 /// [`Vector`]: TypeInner::Vector
1408 /// [`Matrix`]: TypeInner::Matrix
1409 /// [`Array`]: TypeInner::Array
1410 /// [`Pointer`]: TypeInner::Pointer
1411 /// [`space`]: TypeInner::Pointer::space
1412 /// [`ValuePointer`]: TypeInner::ValuePointer
1413 /// [`Float`]: ScalarKind::Float
1414 Access {
1415 base: Handle<Expression>,
1416 index: Handle<Expression>,
1417 },
1418 /// Access the same types as [`Access`], plus [`Struct`] with a known index.
1419 ///
1420 /// [`Access`]: Expression::Access
1421 /// [`Struct`]: TypeInner::Struct
1422 AccessIndex {
1423 base: Handle<Expression>,
1424 index: u32,
1425 },
1426 /// Splat scalar into a vector.
1427 Splat {
1428 size: VectorSize,
1429 value: Handle<Expression>,
1430 },
1431 /// Vector swizzle.
1432 Swizzle {
1433 size: VectorSize,
1434 vector: Handle<Expression>,
1435 pattern: [SwizzleComponent; 4],
1436 },
1437
1438 /// Reference a function parameter, by its index.
1439 ///
1440 /// A `FunctionArgument` expression evaluates to a pointer to the argument's
1441 /// value. You must use a [`Load`] expression to retrieve its value, or a
1442 /// [`Store`] statement to assign it a new value.
1443 ///
1444 /// [`Load`]: Expression::Load
1445 /// [`Store`]: Statement::Store
1446 FunctionArgument(u32),
1447
1448 /// Reference a global variable.
1449 ///
1450 /// If the given `GlobalVariable`'s [`space`] is [`AddressSpace::Handle`],
1451 /// then the variable stores some opaque type like a sampler or an image,
1452 /// and a `GlobalVariable` expression referring to it produces the
1453 /// variable's value directly.
1454 ///
1455 /// For any other address space, a `GlobalVariable` expression produces a
1456 /// pointer to the variable's value. You must use a [`Load`] expression to
1457 /// retrieve its value, or a [`Store`] statement to assign it a new value.
1458 ///
1459 /// [`space`]: GlobalVariable::space
1460 /// [`Load`]: Expression::Load
1461 /// [`Store`]: Statement::Store
1462 GlobalVariable(Handle<GlobalVariable>),
1463
1464 /// Reference a local variable.
1465 ///
1466 /// A `LocalVariable` expression evaluates to a pointer to the variable's value.
1467 /// You must use a [`Load`](Expression::Load) expression to retrieve its value,
1468 /// or a [`Store`](Statement::Store) statement to assign it a new value.
1469 LocalVariable(Handle<LocalVariable>),
1470
1471 /// Load a value indirectly.
1472 ///
1473 /// For [`TypeInner::Atomic`] the result is a corresponding scalar.
1474 /// For other types behind the `pointer<T>`, the result is `T`.
1475 Load { pointer: Handle<Expression> },
1476 /// Sample a point from a sampled or a depth image.
1477 ImageSample {
1478 image: Handle<Expression>,
1479 sampler: Handle<Expression>,
1480 /// If Some(), this operation is a gather operation
1481 /// on the selected component.
1482 gather: Option<SwizzleComponent>,
1483 coordinate: Handle<Expression>,
1484 array_index: Option<Handle<Expression>>,
1485 /// Expression handle lives in global_expressions
1486 offset: Option<Handle<Expression>>,
1487 level: SampleLevel,
1488 depth_ref: Option<Handle<Expression>>,
1489 },
1490
1491 /// Load a texel from an image.
1492 ///
1493 /// For most images, this returns a four-element vector of the same
1494 /// [`ScalarKind`] as the image. If the format of the image does not have
1495 /// four components, default values are provided: the first three components
1496 /// (typically R, G, and B) default to zero, and the final component
1497 /// (typically alpha) defaults to one.
1498 ///
1499 /// However, if the image's [`class`] is [`Depth`], then this returns a
1500 /// [`Float`] scalar value.
1501 ///
1502 /// [`ScalarKind`]: ScalarKind
1503 /// [`class`]: TypeInner::Image::class
1504 /// [`Depth`]: ImageClass::Depth
1505 /// [`Float`]: ScalarKind::Float
1506 ImageLoad {
1507 /// The image to load a texel from. This must have type [`Image`]. (This
1508 /// will necessarily be a [`GlobalVariable`] or [`FunctionArgument`]
1509 /// expression, since no other expressions are allowed to have that
1510 /// type.)
1511 ///
1512 /// [`Image`]: TypeInner::Image
1513 /// [`GlobalVariable`]: Expression::GlobalVariable
1514 /// [`FunctionArgument`]: Expression::FunctionArgument
1515 image: Handle<Expression>,
1516
1517 /// The coordinate of the texel we wish to load. This must be a scalar
1518 /// for [`D1`] images, a [`Bi`] vector for [`D2`] images, and a [`Tri`]
1519 /// vector for [`D3`] images. (Array indices, sample indices, and
1520 /// explicit level-of-detail values are supplied separately.) Its
1521 /// component type must be [`Sint`].
1522 ///
1523 /// [`D1`]: ImageDimension::D1
1524 /// [`D2`]: ImageDimension::D2
1525 /// [`D3`]: ImageDimension::D3
1526 /// [`Bi`]: VectorSize::Bi
1527 /// [`Tri`]: VectorSize::Tri
1528 /// [`Sint`]: ScalarKind::Sint
1529 coordinate: Handle<Expression>,
1530
1531 /// The index into an arrayed image. If the [`arrayed`] flag in
1532 /// `image`'s type is `true`, then this must be `Some(expr)`, where
1533 /// `expr` is a [`Sint`] scalar. Otherwise, it must be `None`.
1534 ///
1535 /// [`arrayed`]: TypeInner::Image::arrayed
1536 /// [`Sint`]: ScalarKind::Sint
1537 array_index: Option<Handle<Expression>>,
1538
1539 /// A sample index, for multisampled [`Sampled`] and [`Depth`] images.
1540 ///
1541 /// [`Sampled`]: ImageClass::Sampled
1542 /// [`Depth`]: ImageClass::Depth
1543 sample: Option<Handle<Expression>>,
1544
1545 /// A level of detail, for mipmapped images.
1546 ///
1547 /// This must be present when accessing non-multisampled
1548 /// [`Sampled`] and [`Depth`] images, even if only the
1549 /// full-resolution level is present (in which case the only
1550 /// valid level is zero).
1551 ///
1552 /// [`Sampled`]: ImageClass::Sampled
1553 /// [`Depth`]: ImageClass::Depth
1554 level: Option<Handle<Expression>>,
1555 },
1556
1557 /// Query information from an image.
1558 ImageQuery {
1559 image: Handle<Expression>,
1560 query: ImageQuery,
1561 },
1562 /// Apply an unary operator.
1563 Unary {
1564 op: UnaryOperator,
1565 expr: Handle<Expression>,
1566 },
1567 /// Apply a binary operator.
1568 Binary {
1569 op: BinaryOperator,
1570 left: Handle<Expression>,
1571 right: Handle<Expression>,
1572 },
1573 /// Select between two values based on a condition.
1574 ///
1575 /// Note that, because expressions have no side effects, it is unobservable
1576 /// whether the non-selected branch is evaluated.
1577 Select {
1578 /// Boolean expression
1579 condition: Handle<Expression>,
1580 accept: Handle<Expression>,
1581 reject: Handle<Expression>,
1582 },
1583 /// Compute the derivative on an axis.
1584 Derivative {
1585 axis: DerivativeAxis,
1586 ctrl: DerivativeControl,
1587 expr: Handle<Expression>,
1588 },
1589 /// Call a relational function.
1590 Relational {
1591 fun: RelationalFunction,
1592 argument: Handle<Expression>,
1593 },
1594 /// Call a math function
1595 Math {
1596 fun: MathFunction,
1597 arg: Handle<Expression>,
1598 arg1: Option<Handle<Expression>>,
1599 arg2: Option<Handle<Expression>>,
1600 arg3: Option<Handle<Expression>>,
1601 },
1602 /// Cast a simple type to another kind.
1603 As {
1604 /// Source expression, which can only be a scalar or a vector.
1605 expr: Handle<Expression>,
1606 /// Target scalar kind.
1607 kind: ScalarKind,
1608 /// If provided, converts to the specified byte width.
1609 /// Otherwise, bitcast.
1610 convert: Option<Bytes>,
1611 },
1612 /// Result of calling another function.
1613 CallResult(Handle<Function>),
1614 /// Result of an atomic operation.
1615 AtomicResult { ty: Handle<Type>, comparison: bool },
1616 /// Result of a [`WorkGroupUniformLoad`] statement.
1617 ///
1618 /// [`WorkGroupUniformLoad`]: Statement::WorkGroupUniformLoad
1619 WorkGroupUniformLoadResult {
1620 /// The type of the result
1621 ty: Handle<Type>,
1622 },
1623 /// Get the length of an array.
1624 /// The expression must resolve to a pointer to an array with a dynamic size.
1625 ///
1626 /// This doesn't match the semantics of spirv's `OpArrayLength`, which must be passed
1627 /// a pointer to a structure containing a runtime array in its' last field.
1628 ArrayLength(Handle<Expression>),
1629
1630 /// Result of a [`Proceed`] [`RayQuery`] statement.
1631 ///
1632 /// [`Proceed`]: RayQueryFunction::Proceed
1633 /// [`RayQuery`]: Statement::RayQuery
1634 RayQueryProceedResult,
1635
1636 /// Return an intersection found by `query`.
1637 ///
1638 /// If `committed` is true, return the committed result available when
1639 RayQueryGetIntersection {
1640 query: Handle<Expression>,
1641 committed: bool,
1642 },
1643 /// Result of a [`SubgroupBallot`] statement.
1644 ///
1645 /// [`SubgroupBallot`]: Statement::SubgroupBallot
1646 SubgroupBallotResult,
1647 /// Result of a [`SubgroupCollectiveOperation`] or [`SubgroupGather`] statement.
1648 ///
1649 /// [`SubgroupCollectiveOperation`]: Statement::SubgroupCollectiveOperation
1650 /// [`SubgroupGather`]: Statement::SubgroupGather
1651 SubgroupOperationResult { ty: Handle<Type> },
1652}
1653
1654pub use block::Block;
1655
1656/// The value of the switch case.
1657#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
1658#[cfg_attr(feature = "serialize", derive(Serialize))]
1659#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1660#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1661pub enum SwitchValue {
1662 I32(i32),
1663 U32(u32),
1664 Default,
1665}
1666
1667/// A case for a switch statement.
1668// Clone is used only for error reporting and is not intended for end users
1669#[derive(Clone, Debug)]
1670#[cfg_attr(feature = "serialize", derive(Serialize))]
1671#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1672#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1673pub struct SwitchCase {
1674 /// Value, upon which the case is considered true.
1675 pub value: SwitchValue,
1676 /// Body of the case.
1677 pub body: Block,
1678 /// If true, the control flow continues to the next case in the list,
1679 /// or default.
1680 pub fall_through: bool,
1681}
1682
1683/// An operation that a [`RayQuery` statement] applies to its [`query`] operand.
1684///
1685/// [`RayQuery` statement]: Statement::RayQuery
1686/// [`query`]: Statement::RayQuery::query
1687#[derive(Clone, Debug)]
1688#[cfg_attr(feature = "serialize", derive(Serialize))]
1689#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1690#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1691pub enum RayQueryFunction {
1692 /// Initialize the `RayQuery` object.
1693 Initialize {
1694 /// The acceleration structure within which this query should search for hits.
1695 ///
1696 /// The expression must be an [`AccelerationStructure`].
1697 ///
1698 /// [`AccelerationStructure`]: TypeInner::AccelerationStructure
1699 acceleration_structure: Handle<Expression>,
1700
1701 #[allow(rustdoc::private_intra_doc_links)]
1702 /// A struct of detailed parameters for the ray query.
1703 ///
1704 /// This expression should have the struct type given in
1705 /// [`SpecialTypes::ray_desc`]. This is available in the WGSL
1706 /// front end as the `RayDesc` type.
1707 descriptor: Handle<Expression>,
1708 },
1709
1710 /// Start or continue the query given by the statement's [`query`] operand.
1711 ///
1712 /// After executing this statement, the `result` expression is a
1713 /// [`Bool`] scalar indicating whether there are more intersection
1714 /// candidates to consider.
1715 ///
1716 /// [`query`]: Statement::RayQuery::query
1717 /// [`Bool`]: ScalarKind::Bool
1718 Proceed {
1719 result: Handle<Expression>,
1720 },
1721
1722 Terminate,
1723}
1724
1725//TODO: consider removing `Clone`. It's not valid to clone `Statement::Emit` anyway.
1726/// Instructions which make up an executable block.
1727// Clone is used only for error reporting and is not intended for end users
1728#[derive(Clone, Debug)]
1729#[cfg_attr(feature = "serialize", derive(Serialize))]
1730#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1731#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1732pub enum Statement {
1733 /// Emit a range of expressions, visible to all statements that follow in this block.
1734 ///
1735 /// See the [module-level documentation][emit] for details.
1736 ///
1737 /// [emit]: index.html#expression-evaluation-time
1738 Emit(Range<Expression>),
1739 /// A block containing more statements, to be executed sequentially.
1740 Block(Block),
1741 /// Conditionally executes one of two blocks, based on the value of the condition.
1742 ///
1743 /// Naga IR does not have "phi" instructions. If you need to use
1744 /// values computed in an `accept` or `reject` block after the `If`,
1745 /// store them in a [`LocalVariable`].
1746 If {
1747 condition: Handle<Expression>, //bool
1748 accept: Block,
1749 reject: Block,
1750 },
1751 /// Conditionally executes one of multiple blocks, based on the value of the selector.
1752 ///
1753 /// Each case must have a distinct [`value`], exactly one of which must be
1754 /// [`Default`]. The `Default` may appear at any position, and covers all
1755 /// values not explicitly appearing in other cases. A `Default` appearing in
1756 /// the midst of the list of cases does not shadow the cases that follow.
1757 ///
1758 /// Some backend languages don't support fallthrough (HLSL due to FXC,
1759 /// WGSL), and may translate fallthrough cases in the IR by duplicating
1760 /// code. However, all backend languages do support cases selected by
1761 /// multiple values, like `case 1: case 2: case 3: { ... }`. This is
1762 /// represented in the IR as a series of fallthrough cases with empty
1763 /// bodies, except for the last.
1764 ///
1765 /// Naga IR does not have "phi" instructions. If you need to use
1766 /// values computed in a [`SwitchCase::body`] block after the `Switch`,
1767 /// store them in a [`LocalVariable`].
1768 ///
1769 /// [`value`]: SwitchCase::value
1770 /// [`body`]: SwitchCase::body
1771 /// [`Default`]: SwitchValue::Default
1772 Switch {
1773 selector: Handle<Expression>,
1774 cases: Vec<SwitchCase>,
1775 },
1776
1777 /// Executes a block repeatedly.
1778 ///
1779 /// Each iteration of the loop executes the `body` block, followed by the
1780 /// `continuing` block.
1781 ///
1782 /// Executing a [`Break`], [`Return`] or [`Kill`] statement exits the loop.
1783 ///
1784 /// A [`Continue`] statement in `body` jumps to the `continuing` block. The
1785 /// `continuing` block is meant to be used to represent structures like the
1786 /// third expression of a C-style `for` loop head, to which `continue`
1787 /// statements in the loop's body jump.
1788 ///
1789 /// The `continuing` block and its substatements must not contain `Return`
1790 /// or `Kill` statements, or any `Break` or `Continue` statements targeting
1791 /// this loop. (It may have `Break` and `Continue` statements targeting
1792 /// loops or switches nested within the `continuing` block.) Expressions
1793 /// emitted in `body` are in scope in `continuing`.
1794 ///
1795 /// If present, `break_if` is an expression which is evaluated after the
1796 /// continuing block. Expressions emitted in `body` or `continuing` are
1797 /// considered to be in scope. If the expression's value is true, control
1798 /// continues after the `Loop` statement, rather than branching back to the
1799 /// top of body as usual. The `break_if` expression corresponds to a "break
1800 /// if" statement in WGSL, or a loop whose back edge is an
1801 /// `OpBranchConditional` instruction in SPIR-V.
1802 ///
1803 /// Naga IR does not have "phi" instructions. If you need to use
1804 /// values computed in a `body` or `continuing` block after the
1805 /// `Loop`, store them in a [`LocalVariable`].
1806 ///
1807 /// [`Break`]: Statement::Break
1808 /// [`Continue`]: Statement::Continue
1809 /// [`Kill`]: Statement::Kill
1810 /// [`Return`]: Statement::Return
1811 /// [`break if`]: Self::Loop::break_if
1812 Loop {
1813 body: Block,
1814 continuing: Block,
1815 break_if: Option<Handle<Expression>>,
1816 },
1817
1818 /// Exits the innermost enclosing [`Loop`] or [`Switch`].
1819 ///
1820 /// A `Break` statement may only appear within a [`Loop`] or [`Switch`]
1821 /// statement. It may not break out of a [`Loop`] from within the loop's
1822 /// `continuing` block.
1823 ///
1824 /// [`Loop`]: Statement::Loop
1825 /// [`Switch`]: Statement::Switch
1826 Break,
1827
1828 /// Skips to the `continuing` block of the innermost enclosing [`Loop`].
1829 ///
1830 /// A `Continue` statement may only appear within the `body` block of the
1831 /// innermost enclosing [`Loop`] statement. It must not appear within that
1832 /// loop's `continuing` block.
1833 ///
1834 /// [`Loop`]: Statement::Loop
1835 Continue,
1836
1837 /// Returns from the function (possibly with a value).
1838 ///
1839 /// `Return` statements are forbidden within the `continuing` block of a
1840 /// [`Loop`] statement.
1841 ///
1842 /// [`Loop`]: Statement::Loop
1843 Return { value: Option<Handle<Expression>> },
1844
1845 /// Aborts the current shader execution.
1846 ///
1847 /// `Kill` statements are forbidden within the `continuing` block of a
1848 /// [`Loop`] statement.
1849 ///
1850 /// [`Loop`]: Statement::Loop
1851 Kill,
1852
1853 /// Synchronize invocations within the work group.
1854 /// The `Barrier` flags control which memory accesses should be synchronized.
1855 /// If empty, this becomes purely an execution barrier.
1856 Barrier(Barrier),
1857 /// Stores a value at an address.
1858 ///
1859 /// For [`TypeInner::Atomic`] type behind the pointer, the value
1860 /// has to be a corresponding scalar.
1861 /// For other types behind the `pointer<T>`, the value is `T`.
1862 ///
1863 /// This statement is a barrier for any operations on the
1864 /// `Expression::LocalVariable` or `Expression::GlobalVariable`
1865 /// that is the destination of an access chain, started
1866 /// from the `pointer`.
1867 Store {
1868 pointer: Handle<Expression>,
1869 value: Handle<Expression>,
1870 },
1871 /// Stores a texel value to an image.
1872 ///
1873 /// The `image`, `coordinate`, and `array_index` fields have the same
1874 /// meanings as the corresponding operands of an [`ImageLoad`] expression;
1875 /// see that documentation for details. Storing into multisampled images or
1876 /// images with mipmaps is not supported, so there are no `level` or
1877 /// `sample` operands.
1878 ///
1879 /// This statement is a barrier for any operations on the corresponding
1880 /// [`Expression::GlobalVariable`] for this image.
1881 ///
1882 /// [`ImageLoad`]: Expression::ImageLoad
1883 ImageStore {
1884 image: Handle<Expression>,
1885 coordinate: Handle<Expression>,
1886 array_index: Option<Handle<Expression>>,
1887 value: Handle<Expression>,
1888 },
1889 /// Atomic function.
1890 Atomic {
1891 /// Pointer to an atomic value.
1892 pointer: Handle<Expression>,
1893 /// Function to run on the atomic.
1894 fun: AtomicFunction,
1895 /// Value to use in the function.
1896 value: Handle<Expression>,
1897 /// [`AtomicResult`] expression representing this function's result.
1898 ///
1899 /// [`AtomicResult`]: crate::Expression::AtomicResult
1900 result: Handle<Expression>,
1901 },
1902 /// Load uniformly from a uniform pointer in the workgroup address space.
1903 ///
1904 /// Corresponds to the [`workgroupUniformLoad`](https://www.w3.org/TR/WGSL/#workgroupUniformLoad-builtin)
1905 /// built-in function of wgsl, and has the same barrier semantics
1906 WorkGroupUniformLoad {
1907 /// This must be of type [`Pointer`] in the [`WorkGroup`] address space
1908 ///
1909 /// [`Pointer`]: TypeInner::Pointer
1910 /// [`WorkGroup`]: AddressSpace::WorkGroup
1911 pointer: Handle<Expression>,
1912 /// The [`WorkGroupUniformLoadResult`] expression representing this load's result.
1913 ///
1914 /// [`WorkGroupUniformLoadResult`]: Expression::WorkGroupUniformLoadResult
1915 result: Handle<Expression>,
1916 },
1917 /// Calls a function.
1918 ///
1919 /// If the `result` is `Some`, the corresponding expression has to be
1920 /// `Expression::CallResult`, and this statement serves as a barrier for any
1921 /// operations on that expression.
1922 Call {
1923 function: Handle<Function>,
1924 arguments: Vec<Handle<Expression>>,
1925 result: Option<Handle<Expression>>,
1926 },
1927 RayQuery {
1928 /// The [`RayQuery`] object this statement operates on.
1929 ///
1930 /// [`RayQuery`]: TypeInner::RayQuery
1931 query: Handle<Expression>,
1932
1933 /// The specific operation we're performing on `query`.
1934 fun: RayQueryFunction,
1935 },
1936 /// Calculate a bitmask using a boolean from each active thread in the subgroup
1937 SubgroupBallot {
1938 /// The [`SubgroupBallotResult`] expression representing this load's result.
1939 ///
1940 /// [`SubgroupBallotResult`]: Expression::SubgroupBallotResult
1941 result: Handle<Expression>,
1942 /// The value from this thread to store in the ballot
1943 predicate: Option<Handle<Expression>>,
1944 },
1945 /// Gather a value from another active thread in the subgroup
1946 SubgroupGather {
1947 /// Specifies which thread to gather from
1948 mode: GatherMode,
1949 /// The value to broadcast over
1950 argument: Handle<Expression>,
1951 /// The [`SubgroupOperationResult`] expression representing this load's result.
1952 ///
1953 /// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
1954 result: Handle<Expression>,
1955 },
1956 /// Compute a collective operation across all active threads in the subgroup
1957 SubgroupCollectiveOperation {
1958 /// What operation to compute
1959 op: SubgroupOperation,
1960 /// How to combine the results
1961 collective_op: CollectiveOperation,
1962 /// The value to compute over
1963 argument: Handle<Expression>,
1964 /// The [`SubgroupOperationResult`] expression representing this load's result.
1965 ///
1966 /// [`SubgroupOperationResult`]: Expression::SubgroupOperationResult
1967 result: Handle<Expression>,
1968 },
1969}
1970
1971/// A function argument.
1972#[derive(Clone, Debug)]
1973#[cfg_attr(feature = "serialize", derive(Serialize))]
1974#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1975#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1976pub struct FunctionArgument {
1977 /// Name of the argument, if any.
1978 pub name: Option<String>,
1979 /// Type of the argument.
1980 pub ty: Handle<Type>,
1981 /// For entry points, an argument has to have a binding
1982 /// unless it's a structure.
1983 pub binding: Option<Binding>,
1984}
1985
1986/// A function result.
1987#[derive(Clone, Debug)]
1988#[cfg_attr(feature = "serialize", derive(Serialize))]
1989#[cfg_attr(feature = "deserialize", derive(Deserialize))]
1990#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
1991pub struct FunctionResult {
1992 /// Type of the result.
1993 pub ty: Handle<Type>,
1994 /// For entry points, the result has to have a binding
1995 /// unless it's a structure.
1996 pub binding: Option<Binding>,
1997}
1998
1999/// A function defined in the module.
2000#[derive(Debug, Default, Clone)]
2001#[cfg_attr(feature = "serialize", derive(Serialize))]
2002#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2003#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2004pub struct Function {
2005 /// Name of the function, if any.
2006 pub name: Option<String>,
2007 /// Information about function argument.
2008 pub arguments: Vec<FunctionArgument>,
2009 /// The result of this function, if any.
2010 pub result: Option<FunctionResult>,
2011 /// Local variables defined and used in the function.
2012 pub local_variables: Arena<LocalVariable>,
2013 /// Expressions used inside this function.
2014 ///
2015 /// An `Expression` must occur before all other `Expression`s that use its
2016 /// value.
2017 pub expressions: Arena<Expression>,
2018 /// Map of expressions that have associated variable names
2019 pub named_expressions: NamedExpressions,
2020 /// Block of instructions comprising the body of the function.
2021 pub body: Block,
2022}
2023
2024/// The main function for a pipeline stage.
2025///
2026/// An [`EntryPoint`] is a [`Function`] that serves as the main function for a
2027/// graphics or compute pipeline stage. For example, an `EntryPoint` whose
2028/// [`stage`] is [`ShaderStage::Vertex`] can serve as a graphics pipeline's
2029/// vertex shader.
2030///
2031/// Since an entry point is called directly by the graphics or compute pipeline,
2032/// not by other WGSL functions, you must specify what the pipeline should pass
2033/// as the entry point's arguments, and what values it will return. For example,
2034/// a vertex shader needs a vertex's attributes as its arguments, but if it's
2035/// used for instanced draw calls, it will also want to know the instance id.
2036/// The vertex shader's return value will usually include an output vertex
2037/// position, and possibly other attributes to be interpolated and passed along
2038/// to a fragment shader.
2039///
2040/// To specify this, the arguments and result of an `EntryPoint`'s [`function`]
2041/// must each have a [`Binding`], or be structs whose members all have
2042/// `Binding`s. This associates every value passed to or returned from the entry
2043/// point with either a [`BuiltIn`] or a [`Location`]:
2044///
2045/// - A [`BuiltIn`] has special semantics, usually specific to its pipeline
2046/// stage. For example, the result of a vertex shader can include a
2047/// [`BuiltIn::Position`] value, which determines the position of a vertex
2048/// of a rendered primitive. Or, a compute shader might take an argument
2049/// whose binding is [`BuiltIn::WorkGroupSize`], through which the compute
2050/// pipeline would pass the number of invocations in your workgroup.
2051///
2052/// - A [`Location`] indicates user-defined IO to be passed from one pipeline
2053/// stage to the next. For example, a vertex shader might also produce a
2054/// `uv` texture location as a user-defined IO value.
2055///
2056/// In other words, the pipeline stage's input and output interface are
2057/// determined by the bindings of the arguments and result of the `EntryPoint`'s
2058/// [`function`].
2059///
2060/// [`Function`]: crate::Function
2061/// [`Location`]: Binding::Location
2062/// [`function`]: EntryPoint::function
2063/// [`stage`]: EntryPoint::stage
2064#[derive(Debug, Clone)]
2065#[cfg_attr(feature = "serialize", derive(Serialize))]
2066#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2067#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2068pub struct EntryPoint {
2069 /// Name of this entry point, visible externally.
2070 ///
2071 /// Entry point names for a given `stage` must be distinct within a module.
2072 pub name: String,
2073 /// Shader stage.
2074 pub stage: ShaderStage,
2075 /// Early depth test for fragment stages.
2076 pub early_depth_test: Option<EarlyDepthTest>,
2077 /// Workgroup size for compute stages
2078 pub workgroup_size: [u32; 3],
2079 /// The entrance function.
2080 pub function: Function,
2081}
2082
2083/// Return types predeclared for the frexp, modf, and atomicCompareExchangeWeak built-in functions.
2084///
2085/// These cannot be spelled in WGSL source.
2086///
2087/// Stored in [`SpecialTypes::predeclared_types`] and created by [`Module::generate_predeclared_type`].
2088#[derive(Debug, PartialEq, Eq, Hash, Clone)]
2089#[cfg_attr(feature = "serialize", derive(Serialize))]
2090#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2091#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2092pub enum PredeclaredType {
2093 AtomicCompareExchangeWeakResult(Scalar),
2094 ModfResult {
2095 size: Option<VectorSize>,
2096 width: Bytes,
2097 },
2098 FrexpResult {
2099 size: Option<VectorSize>,
2100 width: Bytes,
2101 },
2102}
2103
2104/// Set of special types that can be optionally generated by the frontends.
2105#[derive(Debug, Default, Clone)]
2106#[cfg_attr(feature = "serialize", derive(Serialize))]
2107#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2108#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2109pub struct SpecialTypes {
2110 /// Type for `RayDesc`.
2111 ///
2112 /// Call [`Module::generate_ray_desc_type`] to populate this if
2113 /// needed and return the handle.
2114 pub ray_desc: Option<Handle<Type>>,
2115
2116 /// Type for `RayIntersection`.
2117 ///
2118 /// Call [`Module::generate_ray_intersection_type`] to populate
2119 /// this if needed and return the handle.
2120 pub ray_intersection: Option<Handle<Type>>,
2121
2122 /// Types for predeclared wgsl types instantiated on demand.
2123 ///
2124 /// Call [`Module::generate_predeclared_type`] to populate this if
2125 /// needed and return the handle.
2126 pub predeclared_types: FastIndexMap<PredeclaredType, Handle<Type>>,
2127}
2128
2129/// Shader module.
2130///
2131/// A module is a set of constants, global variables and functions, as well as
2132/// the types required to define them.
2133///
2134/// Some functions are marked as entry points, to be used in a certain shader stage.
2135///
2136/// To create a new module, use the `Default` implementation.
2137/// Alternatively, you can load an existing shader using one of the [available front ends][front].
2138///
2139/// When finished, you can export modules using one of the [available backends][back].
2140#[derive(Debug, Default, Clone)]
2141#[cfg_attr(feature = "serialize", derive(Serialize))]
2142#[cfg_attr(feature = "deserialize", derive(Deserialize))]
2143#[cfg_attr(feature = "arbitrary", derive(Arbitrary))]
2144pub struct Module {
2145 /// Arena for the types defined in this module.
2146 pub types: UniqueArena<Type>,
2147 /// Dictionary of special type handles.
2148 pub special_types: SpecialTypes,
2149 /// Arena for the constants defined in this module.
2150 pub constants: Arena<Constant>,
2151 /// Arena for the pipeline-overridable constants defined in this module.
2152 pub overrides: Arena<Override>,
2153 /// Arena for the global variables defined in this module.
2154 pub global_variables: Arena<GlobalVariable>,
2155 /// [Constant expressions] and [override expressions] used by this module.
2156 ///
2157 /// Each `Expression` must occur in the arena before any
2158 /// `Expression` that uses its value.
2159 ///
2160 /// [Constant expressions]: index.html#constant-expressions
2161 /// [override expressions]: index.html#override-expressions
2162 pub global_expressions: Arena<Expression>,
2163 /// Arena for the functions defined in this module.
2164 ///
2165 /// Each function must appear in this arena strictly before all its callers.
2166 /// Recursion is not supported.
2167 pub functions: Arena<Function>,
2168 /// Entry points.
2169 pub entry_points: Vec<EntryPoint>,
2170}